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A B S T R A C T   

Crowd gatherings are an important cause of COVID-19 outbreaks. However, how the scale, scene and other 
factors of gatherings affect the spread of the epidemic remains unclear. A total of 184 gathering events world
wide were collected to construct a database, and 99 of them with a clear gathering scale were used for statistical 
analysis of the impact of these factors on the disease incidence among the crowd in the study. The results showed 
that the impact of small-scale (less than 100 people) gathering events on the spread of COVID-19 in the city is 
also not to be underestimated due to their characteristics of more frequent occurrence and less detection and 
control. In our dataset, 22.22% of small-scale events have an incidence of more than 0.8. In contrast, the inci
dence of most large-scale events is less than 0.4. Gathering scenes such as “Meal” and “Family” occur in densely 
populated private or small public places have the highest incidence. We further designed a model of epidemic 
transmission triggered by crowd gathering events and simulated the impact of crowd gathering events on the 
overall epidemic situation in the city. The simulation results showed that the number of patients will be dras
tically reduced if the scale and the density of crowds gathering are halved. It indicated that crowd gatherings 
should be strictly controlled on a small scale. In addition, it showed that the model well reproduce the epidemic 
spread after crowd gathering events better than does the original SIER model and could be applied to epidemic 
prediction after sudden gathering events.   

1. Introduction 

Since 2019, a novel coronavirus (SARS-CoV-2) has resulted in a 
worldwide pandemic and developed into coronavirus disease 2019 
(COVID-19). In addition to the strong transmission, COVID-19 also has a 
certain mortality rate (Yuan et al., 2020). As variants of SARS-CoV-2 are 
found in an increasing number of countries (Wise, 2020; Islam et al., 
2021), the prevention and control of the COVID-19 epidemic have faced 
more increasing challenges. The factors that influence the spread of 
COVID-19 are complex. Studies have shown that human-to-human in
teractions are an important cause of the spread of COVID-19. For 
example, studies on European countries have shown that business ac
tivities are closely related to the incidence of COVID-19 (Bontempi and 
Coccia, 2021a) and that highly international trade activities are likely to 
increase the risk of virus importation (Bontempi et al., 2021). Moreover, 
city lockdown policies affect morbidity (Askitas et al., 2021). Countries 
with longer lockdown periods have a higher proportion of patients than 
countries with short lockdowns (Coccia, 2021a). In addition, meteoro
logical and environmental factors also affect the outbreak and spread of 
COVID-19 (Diao et al., 2021; Coccia, 2021b; Coccia, 2021c; Domingo 

et al., 2020; Coccai, 2020). A study in China showed a positive linear 
relationship between average temperature and the number of COVID-19 
cases with a threshold of 3 ◦C (Xie and Zhu, 2020). A study in California 
showed that air pollutant concentrations were significantly associated 
with the COVID-19 epidemic (Bashir et al., 2020). Air pollutants can act 
as carriers of SARS-CoV-2 in the air, maintaining viral concentrations 
(Coccia, 2021d). The incidence of COVID-19 may also vary across in
come groups (Chang et al., 2021) and ethnic groups (Pan et al., 2020). 
Social distancing and self-quarantine are still effective means of 
epidemic prevention until the epidemic is fully controlled. Therefore, 
understanding the requirements of social distancing and 
self-quarantining in different scenarios and predicting epidemic devel
opment after gathering events are particularly crucial tasks for epidemic 
prevention. 

Substantial evidence indicates that crowd gatherings may be an 
important cause of the rapid increase in the number of infections. His
torically, large-scale crowd gatherings for religion, sports, music and 
other purposes are substantial causes of widespread epidemics (Memish 
et al., 2019). For example, studies have found that the 1817–24 Asia 
cholera pandemic was associated with the Hindu religious pilgrimage 
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festival, the Kumbh Mela (Hays, 2005), which is one of the largest mass 
gathering events in the world. Large-scale crowd gatherings create 
hotbeds for the spread of diseases (Memish et al., 2019). The simulation 
results also show that during the H1N1 influenza epidemic, the crowd 
gatherings and people travelling increased the number of cases and even 
lead to a second outbreak (Shi et al., 2010). The Islamic pilgrimage 
(Rashid et al., 2008) and the Winter Olympics (Gundlapalli et al., 2007) 
also significantly exacerbate influenza. The COVID-19 pandemic is no 
exception. For example, one study shows that more than 35% of 
COVID-19 cases in Malaysia are related to the Sri Petaling mass gath
ering that occurred between February 27, 2020 and March 1, 2020. 
More than 19,000 people from different countries participated in this 
event (Che et al., 2020). 

Many studies have conducted quantitative research on the impact of 
crowds gathering events on disease transmission. Rainey et al. (2014) 
used video to track, analyze and estimate the number of contacts and 
contact time between participants in mass gathering activities. Hu et al. 
(2013) established a spatial contact model based on population 
thresholds and population mobility models to describe the relationship 
between contact rate and population density and explore the contact 
rate in different locations. Devices such as the internet and infinite 
sensors are also used to monitor mass gathering events to assess and 
control the risk of disease transmission during gatherings (Nsoesie et al., 
2015). Overall, the previous research on the involvement of crowd 
gathering events in the spread of infectious diseases is gradually being 
refined and quantified. However, most of the existing studys only focus 
on typical events and lack the collection and sorting of relevant data, as 
well as a summary of such events and an exploration of the overall rules. 
Additionally, a concise model that can be used to study and predict the 
epidemic spread among crowds in gathering events is also needed. 

Therefore, we collected data during the COVID-19 pandemic to 
establish a crowd gathering event dataset, and designed a model of 
epidemic transmission caused by crowd gathering events to quantita
tively simulate how crowd gathering events affect disease transmission 
in the overall population. We collected 184 crowd gathering events of 
different scales that occurred worldwide from January 2020 to February 
2021. Several outbreaks were triggered by these events, 99 of which had 
clear gathering scale and specific numbers of patients. We categorized 
these cases and explored the relationship between the incidence and the 
scale of crowd gathering events. Then, we use the model to simulate 
typical crowds gathering events of different scales and to simulate the 
changes in the number of patients after their scale is reduced propor
tionally to explore the hazards and influencing factors of crowd gath
ering events on the spread of the epidemic. 

2. Materials and methods 

2.1. Sample and data 

We collected 184 gathering events in more than 23 countries from 
articles and news. The information collected includes the scene, the 
number and the time of gathering events. We define the scale of a 
gathering event with fewer than 100 persons as “small”, an event with 
between 100 persons (including 100 persons) and 500 persons (not 
including 500 persons) as “middle”, and an event with more than 500 
persons as “large”. In addition, we classify events into 25 categories such 
as “Party” and “Meeting”. Among them, 99 events had a clear gathering 
scale, and we used these events to explore the impact of the gathering 
scale and aggregation scene on the incidence. 

The true case data of the two events we used for the simulation came 
from the Health Commission of Liaoning Province (http://wsjk.ln.gov. 
cn/wst_zdzt/xxgzbd/yqtb/index_6.html) and the Changsha Municipal 
Health Commission of (http://wsjkw.changsha.gov.cn/ztzl_1/fkxxgzbd 
/fkdt/index_26.html). 

2.2. Measures of variables 

2.2.1. The gathering model 
We use the extended SEIR model (Godio et al., 2020; Peng et al., 

2020; Cheynet, 2020) to simulate the change in the number of cases 
after the gathering size changes. In this model, the total population is 
divided into seven groups: the susceptible (S), the protected (P), the 
exposed (E, infected cases in a latent period), the infective (I, infected 
cases that have not been quarantined), the quarantined (Q, confirmed 
and quarantined cases), the recovered (R), and dead (D). The sum of 
these seven populations is always equal to the total population (N). 

S+P + E + I + Q + R + D = N (1) 

The model consists of the following formulas: 

dS(t)
dt

= −
βI(t)S(t)

N
− αS(t) (2)  

dP(t)
dt

= αS(t) (3)  

dE(t)
dt

=
βI(t)S(t)

N
− γE(t) (4)  

dI(t)
dt

= γE(t) − δI(t) (5)  

dQ(t)
dt

= δI(t) − λQ(t) − κQ(t) (6)  

dR(t)
dt

= λQ(t) (7)  

dD(t)
dt

= κQ(t). (8)  

α is the rate at which the susceptible (S) individuals become protected 
(P). Moreover, the susceptible may also become exposed (E) at the rate 
of β (infection rate). When a person is infected, he or she will first 
become exposed, and after a certain period of time (incubation period, 
1/γ), the person will become infected (I). δ is the rate at which people 
enter in quarantine. Quarantined (Q) individuals will eventually become 
recovered (R) or dead (D). λ and κ are the cure rate and death rate 
respectively (Cheynet, 2020; Liu et al., 2021). These parameters (α,β,γ,δ,
λ, κ) are fitted from actual cases. Where λ and κ are determined by 
functions and their values vary over time (Cheynet, 2020). See Text S1 
for more details. This study considers the impact of crowd gatherings on 
the epidemic spread and improves upon the model. During a gathering, 
potentially infected persons are present in the crowd. Infection also 
occurs inside the gathering, and the process also follows the above
mentioned rules of transmission of infectious diseases. In the gathering, 
infectious individuals have more opportunities to come in connect more 
people, so the infection rate at gatherings is higher than the overall 
infection rate in society. After a gathering event, the event participants 
return to society and continue to participate in the spread of the 
epidemic throughout society. The overall process is shown in Fig. 1. 

We use the data of real cases from the first week or so days 
(depending on the quality of the data) of an outbreak in a city to fit the 
parameters. In this study, the model is also used to simulate the spread of 
the epidemic within the gathering event. There are individuals who are 
exposed before the gathering event (EG). These people carry the virus 
before participating in the gathering activity but do not know that they 
are sick. During the event, they show contagiousness. The results of the 
gathering event simulation are returned to the model for the overall 
crowd simulation, the numbers of various groups of people in the crowd 
are adjusted, and the next step of the simulation is performed. 

The infection rate (β) consists of two parts: virus transmission rate (c, 
determined by the nature of the virus) and contact rate (τ): 
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β= cτ. (9) 

Thus, the infection rate is related to the contagiousness of the virus 
itself and human-to-human contact. In our model, only the virus trans
mission process from person to person during the crowd gatherings is 
considered. So we only change τ during the crowd gathering process. 

Based on the contact model, Rhodes and Anderson (2008) deduced 
the expression of the infection rate in the gathering population. When 
the activity capacity and body resistance of human are constant, the 
infection rate of crowd gathering is proportional to the population 
density of the gathering place (Rhodes and Anderson, 2008). Therefore, 
for the gathering events in cities, based on the change in the population 
density of the gathering place compared with the overall population 
density, the infection rate of crowd gathering (βG) is expressed as 
follows: 

βG = c⋅τG = c⋅
ρG

ρcity
⋅τcity =

ρG

ρcity
⋅βcity (10)  

where τG is the contact rate within the gathering place. ρG and ρcity are 
the population density of the gathering and urban infection density, 
respectively. τcity and βcity are the contact rate and prevalent infection 
rate in the whole city, respectively. 

ρG is expressed as follows: 

ρG =
PopG

AG
, (11)  

where PopG and AG are the number of people in the gathering and the 
area of gathering place, respectively. 

ρcity is expressed as follows: 

ρcity =
Popcity

AA&PS + AC&BF + AMU + AGS&S
, (12)  

where Popcity is the resident population of the city, AA&PS is the area of 
administration and public services of the city, AC&BF is the area of 
commercial and business facilities of the city, AMU is the area of 
municipal utilities of the city, AGS&S is the area of green space and 
squares of the city. Few people live in some areas in the city, such as 
industrial areas, farmland, wetlands, lakes, and swamps; there is almost 
no human-to-human transmission of diseases in these areas. Therefore, 
only the areas where citizens are concentrated in the city are counted, 
that is, the above four parts. 

Fig. 1. The effect of crowd gatherings on the 
development of the epidemic. a, propagation 
process. Blue indicates uninfected, and red 
indicates infected and potentially infected. 
The circle represents the area in which the 
infection occurs (the large circle represents 
the entire city, regardless of external trans
portation; the small circle on the left repre
sents gatherings that occur at the same time, 
and the infection occurs inside). The large 
circle on the left is the situation at the time 
of the gatherings, and the large circle on the 
right is the situation after the mass gather
ings. b, model setting. When the gathering 
event has not occurred or has ended, the 
model is shown in the block diagram above. 
During a gathering event, the inside of the 
gathering place shows the same propagation 
pattern as the outside world (shown in the 
box below), and there are susceptible cases 
(SG), protected cases (PG), exposed cases 
(EG), infective cases (IG), quarantined cases 
(QG), recovered cases (RG) and dead cases 
(DG) in the gathering events. The infection 
rate is βG. When the gathering activity starts, 
the parameters (α, γ, δ, λ, κ) describing the 
spread of the epidemic in the city are used in 
the prediction process of the gathering 
event, but during the gathering process, 
there is another infection rate (βG). After the 
gathering, the variation of people in various 
categories generated by the gathering pro
cess are added to the population of the city, 
and changed the number of various groups 
of people in the city, and the spread of the 
epidemic in the overall population of the city 
continues. (For interpretation of the refer
ences to color in this figure legend, the 
reader is referred to the Web version of this 
article.)   
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2.2.2. Calculation of relative error 
The relative error is calculated as: 

Relative error = |
Rs − Rt

Rt
| × 100%, (13)  

where Rs is the number of cases simulated by the model, and Rt is the 
number of true cases generated by the gathering event. 

2.3. Data analysis and case simulation 

We classified and counted 99 events with detailed information on 
gathering scale and scenarios to explore the impact of different factors 
on the incidence of gathering activities. In addition, we use the gath
ering model in Section 2.2.1 to simulate two gathering events of 
different scales (gathering events in a canteen in Zhuanghe University 
town in Dalian, China and in two buses in Changsha, China) to further 
explore the impact of gathering events on the spread of COVID-19 in the 
overall population. All calculating and charting work were performed 
using MATLAB R2020a, OriginPro 2018C and Edraw Mind Map 7.9. 

3. Results and discussion 

3.1. The impact of the scale and scene of gathering events on the incidence 

We collected 99 gathering events at a specific scale (Fig. 2). These 
events involved 20 countries and 31,874 cases (only direct transmission 
in a gathering was considered). Among these incidents, small-scale 
gathering events accounted for the majority. A total of 79.80% of the 
gathering events had fewer than 500 persons, and events with fewer 
than 100 people accounted for 54.55%. In the 20 countries involved in 
the case, gatherings of less than 500 people occurred. It shows that 
small-scale incidents are more frequent. The overall incidence of gath
ering events with fewer than 500 people was 23.35%, among which the 
incidence of gathering events with fewer than 100 people was 45.16%. 
The incidence of events between 100 persons (including 100 persons) 
and 500 persons (not including 500 persons) was 17.78%. The overall 
incidence of gatherings of more than 500 people was only 8.77%, with 
the exception of the two gatherings on the French ship Charles de Gaulle 
and the Mexican market. The time distribution of small-scale gatherings 
is more even. Except for January 2020, which was affected by the 

Chinese New Year, when there are more gathering events, in other 
months, gatherings of less than 500 people have almost the same 
frequency. 

In these cases, 22.22% of events with a scale of less than 100 people 
have an incidence greater than 0.8 (Fig. 3). Thus, in small-scale gath
ering events, the extreme phenomenon of all (or the vast majority) of the 
attendees in the gathering being infected is likely. In contrast, in events 
with a scale of more than 500 people, the proportion of events with an 
incidence rate greater than 0.4 is only about 10 percent. This phenom
enon is closely related to the scene. We divided the gathering events into 
more than 15 categories such as “Work” and “Wedding” according to the 
scene. The most common scenes are “Meal” and “Family”, both ac
counting for 14.14% of all events. In these scenarios, the highest inci
dence rate is “Family”, where 64.29% of events have an incidence rate of 
more than 0.8. Small-scale incidents occur mostly in private or small 
public places (bistros, small restaurants, etc.). These locations tend to be 
indoors, and these small and densely populated places are more likely to 
lead to infection. 

Using the dataset for statistical analysis, it can be clearly found that 
gathering events that occur in confined, more closed indoor spaces are 
generally smaller in scale and tend to have higher incidence. The sta
tistics of the gathering events that occurred in China at the beginning of 
the COVID-19 outbreak (Qian et al., 2021), as well as the model simu
lation of the gathering events (Saidan et al., 2020), also illustrate this 
point. Poor ventilation in small spaces is an important reason for the 
high incidence. In outdoor environments, supplemental fresh air can 
dilute the airborne droplet concentration and reduce the risk of virus 
transmission. Therefore, in a gathering place with a small indoor space, 
in addition to opening windows for ventilation, it is also necessary to 
have a gathering density as small as possible to ensure that everyone has 
sufficient fresh air supply (Guo et al., 2021). Temperature and humidity 
also affect the spread of COVID-19: studies have shown that the spread is 
significantly reduced in high-temperature environments (Haque and 
Rahman, 2020; Notari, 2021; Sarkodie and Owusu, 2020; Rosario et al., 
2020). Moreover, in low-temperature environments, the defense func
tion of the human oral mucosa decreases (Guo et al., 2021). The tra
jectory of droplets is also affected by temperature. In terms of humidity, 
a dry indoor environment (RH<40%) prolongs the suspension time of 
droplets in the air, which greatly increases the chance of virus trans
mission through the air (Ahlawat et al., 2020). Therefore, suitable 
temperature and humidity in gathering places are important to control 
the spread of COVID-19 in gathering events. In addition, small-scale 
gatherings are more frequent, and their occurrence is more hidden 
and random, and it is difficult to detect and monitor. Therefore, on the 
whole, the harm of such events to the prevention and control of the 
spread of COVID-19 in cities cannot be ignored. There are still some 
limitations in the dataset. The data come from articles and media re
ports, and there is no guarantee that media reports have no preference 
for different types of gatherings. Moreover, there is no information 
about the self-protection steps taken by event participants (such as 
wearing a mask and consciously reducing physical contact and conver
sation) when the gathering event occurs. Studies have shown that 
wearing masks and other personal protective measures impact the 
spread of the epidemic (Zhai, 2020; Wang et al., 2020). In addition, the 
events in the dataset were concentrated before virus mutations were 
discovered. Gathering events after the COVID-19 vaccine was widely 
available and after the emergence of the variants of SARS-CoV-2 still 
need to be added to the dataset. 

3.2. Simulation of gathering events 

Furthermore, we consider the situation in which individuals in a 
gathering event continue to infect the entire population and simulate the 
incidence in the overall population after the event. We select a large- 
scale event and a small-scale event to simulate separately. For the 
large-scale event, we chose the event that occurred in the canteen of 

Fig. 2. Bubble chart of gathering scale, time of occurrence and incidence 
(different colors of bubbles indicate different countries, the size of the bubble 
indicates the incidence, and the horizontal and vertical coordinates are the 
gathering time and scale, respectively) a, The scale less than 500 people; b, The 
scale more than 500 people. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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university town in Dalian, China (Table S1, S2). A COVID-19 outbreak 
occurred in Dalian in November 2021. Since the first case appeared on 
November 4 and until the new cases were cleared on the 28th, there 
were 308 cases in Dalian. Contaminated cold chain food was the source 
of this epidemic. The rapid spread of the epidemic in universities is an 
important transmission chain of this event. The university town located 
in northeast Dalian has two universities. The infected employees of the 
canteen in the university were the source of the transmission chain of the 
epidemic in the university. On November 4, teachers and students ate in 
the canteen. On November 5, dining in the canteen was banned. As of 
November 27, including canteen staff and students, a total of 81 people 
in the universities were infected (Table S3). According to our simulation 
results, compared with what would have occurred with no gathering 
events occurred in the canteen, the largest daily new cases in Dalian 
increased by 9 (Fig. 4 a), and as of November 27, the cumulative number 
of cases in Dalian increased by 62 (Fig. 4 b). The relative error of the 
simulation is 23.46%. 

For small gathering events, we selected events that occurred in two 
buses in Changsha, China (Tables S4, S5). On January 22, 2020, a pas
senger in Changsha took two buses, bus A with 47 seats and bus B with 
17 seats, and the travel times of the two buses were approximately 3 h 
and 1 h, respectively (Ou et al., 2022). The passenger developed 
symptoms that day and was later diagnosed (Luo et al., 2020). The 

passenger was later identified as the initial spreader on the two buses. As 
of February 24, 13 cases in Changsha were related to the two buses 
(Table S6). According to the simulation results, compared with no 
gathering event, the largest daily new cases in Changsha increased by 1 
people (Fig. 5 a). As of February 4, the cumulative number of cases in 
Changsha increased by 12 (Fig. 5 b), with a relative error of 7.69%. In 
fact, in late January 2020, the first COVID-19 cases appeared in 
Changsha. In the days before lockdown measures were taken, there were 
many similar small gatherings, resulting in a relatively rapid increase in 
cases. Here we have only simulated gathering events on two buses, so 
the simulated cumulative number of cases is lower than the actual cu
mulative number of cases. 

The common feature of the above two cases is that the gathering 
place is relatively closed and the gathering density is high. For the 
gathering event of Changsha buses, bus A was completely closed, and 
bus B only had individual windows opened occasionally. Moreover, the 
air-conditioning systems of both buses were not turned on (Ou et al., 
2022). Furthermore, the concentration of gathering on the bus was very 
high, so the ventilation conditions were poor, and the concentration of 
droplets exhaled by individuals could not be quickly diluted. In fact, air 
circulation alone within a closed environment is not sufficient to prevent 
the spread of COVID-19; it can even facilitate the spread. Opening doors 
and windows, as well as adding extra air, can reduce the risk of disease 

Fig. 3. The impact of scale and scenario on incidence. a, The proportion of the incidence of gathering events with different scales; b, Incidence and number for each 
scene of gathering event. (Yellow, pink, red, brown, and brown-black represent incidence of 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8 and 0.8–1.0, respectively). (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. The simulation of COVID-19 transmission in Dalian with gathering events in the canteen in Zhuanghe University town. (The red line and blue line represent 
the number of cases with and without the gathering event, respectively. Grey dots indicate true cases); a, daily new cases; b, cumulative cases. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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transmission by accelerating the removal of aerosolized virus particles 
and changing particle trajectories in the room (Farthing and Lanzas, 
2021; Ahmadzadeh et al., 2021). For the COVID-19 transmission event 
in Zhuanghe University town in Dalian, since the gathering occurred 
during meal time, there is no option protect oneself by wearing a mask. 
For the gathering event in Changsha, only some passengers wore masks 
since the COVID-19 pandemic was not declared nationwide at the time 
(Ou et al., 2022). According to the results, none of these passengers 
wearing masks were infected. In fact, many experiments and facts have 
proven that for confined spaces with high population density and less 
ventilation, masks are a lifesavers (Zhai, 2020; Esposito and Principi, 
2020; Asadi et al., 2020). 

In the model, only direct contact and transmission between people 
are considered. Therefore, the relationship between the infection rate in 
the gathering place (βG) and the infection rate in the overall population 
(β) is only determined by the relationship between the population 
density of the gathering place and the national population density. That 
is, βG is related only to density. Secondary surface transmission of the 
virus (such as via tables and chairs) and the impact of environmental 
factors, such as the ventilation of the gathering place, on βG are not 
considered here. In addition, the type of gathering activity also impacts 
on βG. For example, at funerals in South Africa, guests singing and 
washing their hands in a basin increase the likelihood of infection (Jaja 
et al., 2020). Activities of different types and intensities have different 
effects on (βG), which still needs to be further refined in the model. 

3.3. Simulation of the occurrence of multiple small-scale gathering events 

To explore the impact of multiple small-scale gathering events on the 
spread of the epidemic in the city, we take the event occurring on bus A 
in Changsha as an example, assuming that there are 50 gathering events 
on the same day in Changsha, and simulate the number of patients. 
According to the simulation results, the maximum number of daily new 
cases will increase by a factor of 3.35 compared with that with no 
gathering event, with 50 such events occurring at the same time (Fig. 6  
a). As of February 4, the confirmed number of cases will increase by a 
factor of 3.36 (Fig. 6 b). However, if the number of passengers in the car 
is reduced by half, the number of patients will drop sharply due to the 
reduction in the density of crowds. Compared with the situation where 
the number of passengers is not halved, the maximum number of daily 
new cases will drop by 36.78%, and the confirmed cases as of February 4 
will drop by 36.17%. 

Therefore, the density of crowds in gathering places has a consid
erable impact on the development of the epidemic. When the scale of the 
gathering decreases, the density of the crowd in the venue also de
creases, and the probability of people in the venue being infected de
creases. For small-scale gathering events, because they are more 
frequent and difficult to detect and control, the harm is not less than that 
of large-scale gathering events. Thus, it is particularly important to 
strictly control the scale of such gathering activities. 

Fig. 5. Same as Fig. 4, but for Changsha with gathering events in two buses.  

Fig. 6. Simulation of cases when 
multiple small-scale crowd gatherings 
(such as the COVID-19 transmission 
event on bus A in Changsha) occur at 
the same time. (The blue line, the red 
line, and the black line represent the 
number of cases without a gathering 
event, the number of patients after 50 
gatherings of the same scale and the 
number of patients after the scale was 
halved, respectively.) (a, daily new 
cases; b, confirmed cases). (For inter
pretation of the references to color in 
this figure legend, the reader is 
referred to the Web version of this 
article.)   
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4. Conclusion 

In our study, we first constructed a gathering event dataset. The 
dataset contains 184 cases from January 2020 to February 2021. These 
cases involved more than 20 countries, including 99 cases with clear 
information such as the scale of the gathering, the scene, the number of 
patients, and the time of onset. Based on these cases, we studied the 
impact of factors such as the size of the gathering, the gathering scene, 
and the time of the gathering event on the incidence. The results show 
that small-scale gathering events are more frequent and their occurrence 
time is more evenly distributed. In these cases, the incidence of gath
ering events with fewer than 100 people was 45.16%, while the overall 
incidence of gathering events with more than 500 people, except for 
individual cases, was only 8.77%. The incidence rate is closely related to 
the scene, and the most common scenes are “Meal” and “Family”. 
Gathering events that occur in confined, closed indoor spaces are 
generally smaller in size and tend to have higher incidence. 

Furthermore, we designed a gathering event outbreak-spreading 
model based on the improved SEIR model and used this model to 
simulate the impact of gathering events on the development of the 
epidemic. For large-scale gathering events, we selected the canteen 
gathering events in Zhuanghe University town in Dalian, China. The 
number of cases was simulated by considering gathering factors, and the 
simulation error was 23.46%. The small-scale gathering events selected 
for simulation were the bus gathering event in Changsha, China. The 
simulation error was 7.69%. This shows that the model can accurately 
reproduce the epidemic development following the events. Fig. S1 
shows the correlation between the simulated and reported cases in the 
two cities with Pearson correlation coefficients at the upper-left corner 
of the sub-figures. There was a high correlation between the simulated 
cumulative and reported cases in both events (0.986 and 0.972). The 
model for the spread of infectious diseases can be applied to the pre
diction of epidemic situations after sudden gathering events. We 
increased the number of small gatherings and halved the scale for 
another simulation. After the scale is halved, the population density in 
the gathering place decreases, and the number of patients eventually 
decreases substantially. The results show that the population density in 
the gathering place is crucial to the spread of the epidemic. For small- 
scale gathering events, the number of gatherings should be strictly 
controlled due to the more enclosed space. The determination method of 
model parameters has been verified in the simulation of the case, but it 
still needs to be further verified and improved with more cases in the 
future. 

According to our research results, small gatherings that are common 
and easily overlooked, such as dinner parties, should not be under
estimated in terms of the risk of the spread of COVID-19. For such 
gathering events, the scale should be strictly controlled to reduce the 
density of gatherings, and attention should be given to the ventilation of 
gathering places and personal protection. Infected persons should be 
quarantined immediately to prevent further spread of COVID-19. For 
this study, more detailed cases with self-protection measures and 
vaccination data need to be added in the future. The indirect trans
mission process in the gathering events, the meteorological and envi
ronmental factors that affect the transmission, etc., still need to be 
further considered to improve the model. 
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