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Abstract: Artificial intelligence (AI) technology plays a crucial role in infectious disease outbreak
prediction and control. Many human interventions can influence the spread of epidemics, including
government responses, quarantine, and economic support. However, most previous AI-based models
have failed to consider human interventions when predicting the trend of infectious diseases. This
study selected four human intervention factors that may affect COVID-19 transmission, examined
their relationship to epidemic cases, and developed a multivariate long short-term memory network
model (M-LSTM) incorporating human intervention factors. Firstly, we analyzed the correlations and
lagged effects between four human factors and epidemic cases in three representative countries, and
found that these four factors typically delayed the epidemic case data by approximately 15 days. On
this basis, a multivariate epidemic prediction model (M-LSTM) was developed. The model prediction
results show that coupling human intervention factors generally improves model performance, but
adding certain intervention factors also results in lower performance. Overall, a multivariate deep
learning model with coupled variable correlation and lag outperformed other comparative models,
and thus validated its effectiveness in predicting infectious diseases.

Keywords: COVID-19 forecasting; human interventions; multivariate prediction; LSTM model

1. Introduction

With global warming, ecological changes, and urbanization in recent decades, an
increasing number of pathogenic microorganisms have mutated, making outbreaks of
major infectious diseases more frequent, increasing by one or more species per year [1].
For example, SARS, influenza A(H1N1), H7N9, Ebola hemorrhagic fever, and COVID-19
have triggered a series of major public health outbreaks. These diseases pose a serious
threat to human health, social stability, and public safety due to characteristics such as high
infectivity and their rapid, wide-ranging transmission.

Since the outbreak of COVID-19, researchers have been increasingly interested in
the application of AI techniques to COVID-19 responses [2]. Examples include AI-based
diagnosis of viral images and symptoms [3–5], prediction of the number of cases [6–8],
intelligent contact tracing [9], and artificial intelligence-assisted drug discovery [10]. Partic-
ularly, a majority of studies have been dedicated to the use of machine learning techniques
to predict the number of infections. For instance, Ly et al. [11] used an adaptive neuro-fuzzy
inference system to predict COVID-19 cases in the UK and showed that data from Spain
and Italy could improve the prediction ability. Based on time series data reported from
1 March 2020 to 30 April 2020, Parbat et al. [12] used support vector regression (SVR) to
forecast coronavirus cases in India in 2019. Furthermore, deep learning techniques have
been widely used in the prediction of COVID-19, especially the LSTM [13]. The LSTM is an
extension of recurrent neural networks (RNNs), which rely on persistent prior knowledge
and typically have short-term memory. Shastri et al. [14] used the LSTM to predict con-
firmed cases of COVID-19 and resulting deaths in both India and the United States. A mean
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absolute percentage error (MAPE) calculation showed that the prediction error rate for the
LSTM model was 2.0 to 3.3%. Kırbaş et al. [15] used the LSTM model to predict COVID-19
cases in eight European countries. Despite the differences in human behavior, applied
measures, and available data in each country/region, the LSTM outperformed ARIMA and
NARNN in predicting COVID-19 cases. Mohamed et al. [16] applied several deep learning
models to predict the COVID-19 outbreak in Egypt, and they found that the LSTM model
showed the best performance in forecasting cumulative infections for one week and one
month in advance. Devaraj et al. [17] assessed the reliability and practical implications of
several AI-based models. In comparison to other algorithms considered, the stacked LSTM
model had higher prediction accuracy and reliability in forecasting cumulative infections
one week and one month ahead.

The above studies have shown that the LSTM algorithm is capable of accurately pre-
dicting COVID-19 epidemics. However, these studies lack consideration of possible human
intervention factors that influence epidemic development when training AI models, such as
government response, implementation of epidemic prevention and control measures, strin-
gency, and economic support. Several studies have determined that non-pharmaceutical
interventions by the state can significantly affect infectious disease epidemics [18,19]. It
has been demonstrated that strict prevention and control measures are more effective in
suppressing infectious disease epidemics, emphasizing the importance of dynamic hu-
man interventions. Hence, it is generally accepted that human intervention can influence
epidemic development trends in different ways, so it is necessary to take human interven-
tion factors into account when developing AI-based epidemic prediction models. To this
end, we proposed a multivariate long short-term memory model (M-LSTM) coupled with
human-influencing factors for effective infectious disease prediction. Firstly, we collected
data on non-pharmaceutical interventions during the COVID-19 outbreak from Oxford
University’s Oxford COVID-19 Government Response Tracker (OxCGRT) [20]. These four
indexes were selected as the main factors for human intervention: overall government
response, containment and health, stringency, and economic support. Subsequently, we an-
alyzed the correlations and lagged effects between four human factors and epidemic cases
in three representative countries: the United States, the United Kingdom, and India. On this
basis, a multivariate epidemic prediction model (M-LSTM) was developed. Multi-group
experiments were conducted to assess the prediction performance of multiple different
human-influenced factor coupling schemes. Finally, the epidemic prediction model with
the best-coupled variables was determined.

The contribution of our work can be summarized by the two following aspects.
(1) The relationship between human intervention factors—such as government

response—and epidemic changes is unclear. Therefore, in this paper, we analyzed the
correlation and lag between the four human intervention factors and data on the COVID-19
epidemic. It was found that there were significant negative correlations and lags between
these two factors.

(2) To accurately predict the epidemic trend, we proposed a novel multivariate deep
learning prediction model (M-LSTM) by coupling the information of human intervention
factors to provide more reliable epidemic prediction results.

2. Methods and Data
2.1. LSTM Model Principles

LSTMs, which are a special type of RNN, can learn long-term dependence. Hochreiter
and Schmidhuber proposed the long short-term memory neural network, which overcomes
the gradient vanishing problem and performs well in a variety of problems [21]. In the
LSTM network, three gates determine the behavior of the memory unit. These gates are the
input gate, the output gate, and the forgetting gate, which control whether to update or
discard the data. By eliminating the disadvantages associated with the general recursive
neural model of excessive weight influence and easy gradient disappearance, the network
can converge more quickly and efficiently. Prediction accuracy can be effectively improved.
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In the LSTM network model, in addition to the hidden-layer neurons, there is a memory
cell ct, which is used to encode the memory of recorded information until it reaches the
time step ‘t’.

The process layer equations of the LSTM network are shown below, and the LSTM
schematic is shown in Figure 1.
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Input gate:
it = sigmoid_activation(Vizt−1 + Wixt + bi) (1)

Forgetting gate:

ft = sigmoid_activation
(

Vf zt−1 + W f xt + b f

)
(2)

Output gate:
ot = sigmoid_activation(Vozt−1 + Woxt + bo) (3)

Memory cell:

c̃t = sigmoid_activation(Vczt−1 + Wcxt + bc) (4)

ct = ft ⊗ ct−1 + it ⊗ c̃t (5)

Final output:
ht = ot ⊗ tanh_activation(ct) (6)

where xt and zt are the input and output of the LSTM connectivity layer at time t; Wi,
Wf, Wo, and Wc are the weights of input gate, forgetting gate, output gate, and memory
cell, respectively; Vi, Vf, Vo, and Vc are the cyclic layer weight matrices of the input gate,
forgetting gate, output gate, and memory cell, respectively; and bi, bf, bo, and bc are the
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deviation coefficients of the input gate, forgetting gate, output gate, and memory cell,
respectively. The operator ⊗ represents multiplication by elements.

The LSTM neural network training process is divided into the following steps: Step 1:
at time step ‘t’, the forgetting gate ft is passed through the new input xt and the function of
the previous hidden state zt−1. If the forgetting gate value is close to 1, then the information
from the last memory cell ct−1 will be retained and vice versa; Step 2: the new input
state and the function of the previous hidden state from the input gate it are added to
the memory cell to obtain it; Step 3: the output gate decides what information should be
obtained from the LSTM memory cell to simulate a new hidden state zt.

2.2. Multivariate Epidemic Prediction Model with Coupled Human Factors

This paper proposes a multivariate LSTM (M-LSTM) epidemic prediction model that
combines correlation and lag between human factors to address actual changes in the
epidemic. Figure 2 illustrates the topology of the network structure of the model, which
consists of three layers: input, hidden, and output.
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Figure 2. M-LSTM model structure.

According to the M-LSTM model structure, the model training input set needs to be
determined first. The three-dimensional input array is formed as [N, T, Var]. Among them,
N is the size of the input samples. The variables (Var) of the input layer are selected by
calculating correlations between confirmed cases and deaths with the four human influence
factors. Then, considering correlations and lags between variables, multivariate forecasts
based on correlation thresholds were constructed. For example, the M-LSTM (R_thred > 0.7)
indicated that human-influenced variables with correlation thresholds greater than 0.7 were
to be screened as inputs. The rolling time window method was used to generate time series
samples. The time window T was set to 7 days (the historical data from the first 7 days
were used as model inputs (denoted as ts01, ts02, . . . , ts07), and the future day sample
values were the target outputs). Additionally, alignment time was determined based on the
time lag between the four human intervention factors and the number of confirmed cases
and fatalities. Subsequently, the hidden layer was composed of a 2-layer LSTM structure
consisting of 64 neuron nodes in the first layer and 32 neuron nodes in the second layer.
To mitigate the overfitting phenomenon during model training, the Dropout algorithm
was added to the hidden layer to remove random units and connections from the neural
network during training. The mean absolute error (MAE) was selected as the loss function,
and the Adam algorithm was used to create optimized parameters for each node’s learning;
then, the error was reduced by iterating and adjusting the weights until convergence was
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achieved. Finally, the prediction results were provided by the output layer, and the inverse
normalization process reduced the results to the format of the original data.

2.3. Data Collection
2.3.1. COVID-19 Data Collection

Prediction model accuracy depends on historical data, so sufficient historical data on
the outbreak are required. In this study, we collected data from the open dataset Our World
in Data (COVID-19 cases), which contains global daily data from the European Centre for
Disease Prevention and Control (ECDC) [22]. As a representative sample of the epidemic
situation in the Americas, Asia, and Europe, we selected three countries whose populations
have been most heavily affected by the COVID-19 epidemic. These countries were the
United States, the United Kingdom, and India. For these three countries, daily confirmed
cases and deaths per 100,000 population were collected from 1 April 2020 to 1 April 2022.
The calculation formulas were as follows:

com f irmed cases per 100 thousand =
com f irmed cases per day

Total Population
× 100, 000 (7)

deaths per 100 thousand =
deaths per day

Total Population
× 100, 000 (8)

2.3.2. Human Intervention Data Collection

In this paper, data regarding human intervention measures for COVID-19 were col-
lected through the Oxford COVID-19 Government Response Tracker (OxCGRT) [20]. Ox-
CGRT provides a systematic, longitudinal measure of government responses to COVID-19
since 1 January 2020. Through standardized indicators, the project monitors national and
subnational governments’ policies and interventions. It also creates a suite of composite
indices to quantify the extent of these human responses. The data mainly cover public
information on 20 indicators of government response to COVID-19 measures, of which
C1–C8 record information about containment and closure policies; these consist of 8 policy
indicators, including school suspension, work stoppage, public event cancellation, assem-
bly restriction, public transportation closure, home quarantine, domestic travel restriction,
and international travel control. E1–E4 record economic policies and include citizens’
income support, debt and contract relief, fiscal measures, foreign aid, and 4 other indicators.
H1–H7 record health system policies, include public information campaigns, COVID-19
screening, close contact tracing, emergency investments in health care services and vaccines,
facial protection, and recent vaccination policies.

Various combinations of these indicators provide four composite indices that reflect the
intervention policies in place in a given area. Each index comprises a number of individual
policy indicators, as shown in Table 1. For each indicator, an ordinal score was calculated,
with half a point deducted for policies that were more targeted than generic. Each value
was scaled by its maximum value to produce a score from 0 to 100, with missing values
contributing 0, to produce the overall index. This calculation is described as follows:

index =
1
k

k

∑
j=1

Ij (9)

where k is the number of component indices in a composite index and Ij is the score of a
single index.

Each single score I for each indicator j on each day was calculated as follows:

Ij,t = 100×
vj,t − 0.5(Fj − f j,t)

NJ
(10)
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where Nj is the maximum value of the indicator, if that indicator has a flag (Fj = 1 if
the indicator has a flag variable, or 0 if the indicator does not have a flag variable); vj,t
is the recorded policy value on the ordinal scale; and fj,t is the recorded binary flag for
that indicator.

Table 1. OxCGRT index composition.

Index Name Government
Response Index

Containment and
Health Index

Stringency
Index

Economic
Support Index

C1 x x x
C2 x x x
C3 x x x
C4 x x x
C5 x x x
C6 x x x
C7 x x x
C8 x x x
E1 x x
E2 x x
E3
E4
H1 x x x
H2 x x
H3 x x
H4
H5
H6 x x
H7 x x
H8 x x

(x indicates that an indicator contributes to that index).

Finally, these indicators were aggregated into four composite indices. The first was
the overall government response index (OGRI), which recorded the changes in government
response measures across indicators that become stronger or weaker over the course of an
outbreak; second, the containment and health index (GHI), which combined measures such
as lockdown restrictions, testing policies, contact tracing, short-term investments in health
care, and investments in vaccines; third, the economic support index (ESI), which recorded
indicators such as income support and debt relief; and fourth, the original policy intensity
index, the stringency index (SI), which captured the stringency of blockade policies that
primarily restricted people’s behavior. In this paper, we collected four indexes (OGRI, GHI,
SI, and ESI) from 1 March 2021 to 31 December 2022 in three countries, namely, the USA,
the UK, and India, to represent the human impact factors.

3. Experiment

The experiments were divided into two parts: analysis of the relationship between
human-influenced factors and epidemic changes and AI model prediction analysis. This
experiment examined the correlations and lags between the four human-influenced factors
and the number of confirmed epidemic cases and deaths in order to develop a multivariate
epidemic prediction model. The second experiment compared the performance of the uni-
variate and multivariate epidemic prediction models after incorporating human-influenced
factors. We used Python3.7 as the experimental programming language and Tensorflow as
the algorithm platform on a CPU Intel i7 with 8 GB of RAM.

3.1. Evaluation Metrics

In order to assess the predictive validity of the proposed model, three widely used
error evaluation metrics, namely, mean absolute error (MAE), root mean square error
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(RMSE), and goodness of fit (R2), were selected as error metrics to measure the degree of
deviation of the predicted values from the actual values, calculated as follows:

MAE =
1
N

N

∑
n=1

∣∣∣yn −
∧
yn

∣∣∣ (11)

RMSE =

 1
N

N

∑
n=1

(
yn −

∧
yn

)2
1/2

(12)

R2= 1−

N
∑

n=1
(yn − ŷn)

N
∑

n=1
(yn − y)

(13)

3.2. Results of Correlation and Lag between Human Influences and COVID-19 Epidemic

The Pearson correlation coefficients between the epidemic data and the current in-
dicators of human influences in the three selected countries are shown in Table 2. The
results show that the correlation coefficients between the four human influence indicators
and the number of confirmed cases and deaths were statistically significant (p < 0.05),
suggesting that there is a significant correlation between epidemic changes and epidemic
prevention policy indicators. Specifically, the government response index, stringency index,
containment and health index, and economic support index were negatively correlated
with the number of confirmed cases and deaths in three countries. Accordingly, govern-
ment prevention and control measures, including response, policy intensity, lockdown
restrictions, testing policies, contact tracing, vaccine investments, and economic support
contributed to reducing the number of confirmed cases and deaths. In terms of overall
correlation with the epidemic data, the economic support index had the highest correlation,
followed by the stringency index and the government response index. Moreover, there
were differences among the countries in the correlations between the four types of indices
and the number of confirmed cases and deaths, reflecting the effects of different types of
epidemic prevention and control policies.

Table 2. Pearson correlation coefficients of human indicators and epidemic data.

Country Data Type Government
Response Index

Stringency
Index

Containment
Health Index

Economic
Support Index

USA
Confirmed cases −0.318 ** −0.430 ** 0.011 −0.739 **

Deaths −0.284 ** −0.460 ** 0.022 −0.683 **

UK
Confirmed cases −0.642 ** −0.720 ** −0.531 ** −0.766**

Deaths −0.324 ** −0.526 ** −0.226 ** −0.495 **

India
Confirmed cases −0.402 ** −0.434 ** −0.190 ** −0.795 **

Deaths −0.434 ** −0.470 ** −0.228 ** −0.788 **
(Note: ** p < 0.01).

The cross-correlation function (CCF) is used to calculate the lagged correlation between
human impacts and the COVID-19 epidemic. The CCF is the degree of correlation between
two time series at any two different moments. It was assumed that there were two time
series, Xt, t = 1, 2, 3, . . . , and Yt, t = 1, 2, 3, . . . Then, the correlation between moment
t and moments t + n was the nth-order cross-correlation, which was given using the
following equation:

ccfn =
∑ (xt − xt)

(
yt+n − Yt+n

)√
∑ (xt − xt)

2∑
(
yt+n − Yt+n

)2
(14)
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Figures 3–5 show the lagged correlations between the four different human factor
indices and the number of confirmed cases and deaths in the three countries. It can be
seen that lagged effects existed between the four different human intervention factors and
the epidemic case data in all three countries. With the increasing number of lag days,
the negative correlation between the four human factors and confirmed cases and deaths
increased. This demonstrated that human intervention was not immediately effective in
controlling the epidemic and took some time to become so. The correlation coefficients
generally increased rapidly from 0 to 15 days after the lag, and then the correlations leveled
off as the lag days increased. The results indicate that human interventions produced better
results around 15 days after they were implemented.
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Moreover, there were differences in the lagged effects between the four different hu-
man intervention indices and COVID-19 cases across the three countries. In the United
States, there were significant lags between the four human intervention factors and the
number of confirmed cases and deaths, with an average lag period of between 15 and
30 days; in the United Kingdom, there were notable lags between the four human interven-
tion factors and the number of deaths, but insignificant lags with the number of confirmed
cases, with no lagged correlation between the economic support index and confirmed
cases. In India, the government response index, stringency index, and containment and
health index all had significant lags with confirmed cases and deaths of between 9 and
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12 days. Conversely, the economic support index had a substantial impact on the number
of confirmed cases and deaths, indicating that early government support helped to control
the outbreak.
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3.3. Evaluation Results of the Prediction Effectiveness of Multivariate LSTM Models Coupled with
Human Influences

For the purpose of forecasting the trend of the COVID-19 epidemic, a multivariate
data-driven epidemic prediction model was developed based on a correlation and lag rela-
tionship analysis. An input layer featured a selection scheme relying on correlations with
human-influenced factors between confirmed cases, deaths, and delays. In the experiment,
the data were first divided into two parts: 80% was the training set and the remaining 20%
was the test set. The historical time interval T of the input data was 7, the epoch of the
model training was 50, and the batch size was 8.

First, three sets of comparative models were developed, including univariate pre-
diction, multivariate prediction, and multivariate prediction considering a correlation
threshold filter for human influences. For the univariate case, we used the number of
confirmed cases and deaths time series (inputs) to predict the number of confirmed cases
and deaths time series (expected outputs), respectively. C (confirmed cases) and D (death
cases) were used to represent the univariate inputs to the number of confirmed cases and
deaths. Data from the past 7 days were used to forecast the value 1 day in the future using
a rolling forecast. For the multivariate case, more variables were gradually added to the
input set to form different coupling schemes. The change in the predictive power of the
model was then observed experimentally.

The four input coupling schemes for predicting confirmed cases were: confirmed
cases and government response index (C + GRI); confirmed cases, government response
index, and stringency index (C + GRI + SI); confirmed cases, government response index,
stringency index, and containment and health index (C + GRI + SI + CHI); and confirmed
cases, government response index, stringency index, containment and health index, and
economic support index (C + GRI + SI + CHI + ESI). The four input coupling schemes for
death cases were: deaths and government response index (D + GRI); deaths, government
response index, and stringency index (D + GRI + SI); deaths, government response index,
stringency index, and containment and health index (D + GRI + SI + CHI); and deaths,
government response index, stringency index, containment and health index, and economic
support index (D + GRI + SI + CHI + ESI). Then, considering the correlations and lags
between variables, multivariate forecasts based on correlation thresholds were constructed.
For example, the M-LSTM (R_thred > 0.7) indicated that variables with correlation thresholds
greater than 0.7 were screened as inputs. Since the situation varied from country to
country, the most appropriate threshold was selected based on the results of multiple
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experiments. Tables 3–5 compare the errors of prediction models constructed with different
input variables for each of the three countries. Figure 6 shows the curves of the training
data and the test data (prediction data) of all the comparative models for the three countries.
The specific analysis was conducted as follows.

Table 3. Comparison of multivariate model prediction results in the USA.

Dataset Input Variables MAE RMSE R2

Confirmed cases

C 24,017.09 16,754.50 0.642
C + GRI 19,280.49 15,318.06 0.769

C + GRI + SI 12,011.64 10,755.52 0.911
C + GRI + SI + CHI 10,408.69 9229.33 0.933

C + GRI + SI + CHI + ESI 6960.93 5311.93 0.970
M-LSTM (R_thred > 0.4) 8370.55 6751.52 0.957

Deaths

D 161.50 160.10 0.478
D + GRI 109.36 107.05 0.761

D + GRI + SI 108.30 91.73 0.765
D + GRI + SI + CHI 32.36 28.48 0.979

D + GRI + SI + CHI + ESI 82.24 73.49 0.865
M-LSTM (R_thred > 0.4) 20.87 15.08 0.991

Table 4. Comparison of multivariate model prediction results in the UK.

Dataset Input Variables MAE RMSE R2

Confirmed cases

C 31,945.93 23,168.87 0.696
C + GRI 35,955.69 27,135.31 0.615

C + GRI + SI 34,315.57 24,584.63 0.650
C + GRI + SI + CHI 31,845.91 25,464.80 0.698

C + GRI + SI + CHI + ESI 28,594.80 23,038.30 0.757
M-LSTM (R_thred > 0.7) 12,572.57 10,922.31 0.953

Deaths

D 108.79 105.49 0.065
D + GRI 61.08 40.12 0.705

D + GRI + SI 36.46 32.90 0.895
D + GRI + SI + CHI 110.47 82.54 0.036

D + GRI + SI + CHI + ESI 55.33 46.36 0.758
M-LSTM (R_thred > 0.5) 28.62 22.13 0.935

Table 5. Comparison of multivariate model prediction results in India.

Dataset Input Variables MAE RMSE R2

Confirmed cases

C 1896.81 1658.97 0.514
C + GRI 1087.70 901.78 0.840

C + GRI + SI 712.68 654.50 0.931
C + GRI + SI + CHI 1686.22 1468.51 0.616

C + GRI + SI + CHI + ESI 1277.73 1104.02 0.780
M-LSTM (R_thred > 0.4) 426.37 343.09 0.975

Deaths

D 13.65 13.38 0.005
D + GRI 9.46 9.41 0.522

D + GRI + SI 4.35 4.09 0.899
D + GRI + SI + CHI 11.51 11.18 0.293

D + GRI + SI + CHI + ESI 7.85 7.31 0.671
M-LSTM (R_thred > 0.4) 1.77 1.39 0.983
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A comparative analysis of univariate and multivariate forecasting effects indicated
that multivariate forecasting methods showed significantly better forecasting performances
than univariate methods in most cases in the three countries. The goodness-of-fit R2 of the
five multivariate forecasting methods was significantly higher than that of the univariate
forecasting methods. For instance, compared with univariate forecasting for the number of
confirmed cases (C) in the United States, the R2 of the multivariate forecasting methods C +
GRI, C + GRI + SI, C + GRI + SI + CHI, C + GRI + SI + CHI + ESI, and M-LSTM improved
by 19.80%, 41.76%, 45.23%, 51.02%, and 48.93%, respectively. When comparing multivariate
forecasting methods for deaths (D) in the USA, C + GRI, C + GRI + SI, C + GRI + SI + CHI,
C + GRI + SI + CHI + ESI, and M-LSTM improved R2 by 59.03%, 59.99%, 104.63%, 80.74%,
and 107.19%, respectively. Based on the above results, it appears that incorporating human
influencing factors into the LSTM model will be able to significantly improve its ability to
predict epidemics in the future.
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The predictive effects of the coupled models with different input variables ere com-
pared and analyzed. The synthesis in Tables 3–5 shows that the average predictive perfor-
mance of the multivariate model improved as more input variables were added, but the
situation varied slightly for different countries. In the United States, for example, the MAE
and RMSE continued to decrease and the R2 continued to increase with the addition of in-
put variables when predicting confirmed cases and deaths. However, for the UK and India,
an increase in input variables did not necessarily result in an improvement in prediction
performance; for example, D + GRI + SI achieved the best prediction performance and D
+ GRI + SI + CHI achieved the worst for the prediction of deaths in the UK; in India, C +
GRI + SI achieved the best and C + GRI + SI + CHI achieves the worst outcomes for the
prediction of confirmed diagnoses. As a result, coupling more input variables improved
prediction performance, but coupling some individual input variables also resulted in less
accurate predictions.

A comparison of the prediction effects of multivariate methods screened using cor-
relation was conducted. Correlation-based M-LSTM methods consistently outperformed
other prediction methods in predicting confirmed cases and deaths. For example, the mean
R2 for the M-LSTM improved by 31.75%, 18.82%, 32.44%, and 16.56% in comparison to C
+ GRI, C + GRI + SI, C + GRI + SI + CHI, and C + GRI + SI + CHI + ESI, respectively, in
forecasting the number of confirmed cases in the three countries. Comparing the M-LSTM
to D + GRI, D + GRI + SI, D + GRI + SI + CHI, and D + GRI + SI + CHI + ESI, the mean R2 of
the M-LSTM increased by 50.45%, 14.45%, 901.76%, and 28.19%, respectively, in predicting
the number of death cases in the three countries. Further observations from Figure 6 show
similar conclusions. For instance, Figure 6 shows that M-LSTM was closer to the actual
values than the other models. Specifically, in predicting the number of confirmed and death
cases in the UK, M-LSTM yielded the best-fitting results with the actual values, indicating
its superior forecasting capability relative to the other models. It can be concluded that the
M-LSTM proposed in this paper can achieve a superior prediction performance compared
with the other models.

4. Conclusion and Discussion

In recent years, research on the application of AI technology to infectious disease
prediction has become increasingly popular. Especially since the outbreak of COVID-19,
many researchers have developed various AI models to simulate the spread and develop-
ment of the epidemic in order to assist government agencies in preparing and formulating
countermeasures in advance. However, most of the existing studies have ignored the
impact of human influences on epidemic prediction and failed to effectively integrate
human influences into epidemic prediction; on the other hand, most of these studies used
univariate prediction models, which are more common in epidemiology. Thus, this study
developed a multivariate machine learning epidemic prediction model that incorporated
human intervention factors and investigated the logical relationship between human factors
and epidemic cases. An empirical study was conducted to analyze the correlation and
lag between human factors and epidemic changes using the COVID-19 epidemic as an
example. In addition, several multivariate machine learning epidemic prediction models
were developed and compared in terms of their predictive performance.

Based on the above research work, the major findings of the paper are as follows.
(1) There is a correlation between epidemic change and human influences. It was

found that the government response index, stringency index, containment and health index,
and economic support index were all negatively correlated with confirmed cases and deaths.
Furthermore, the correlation between the four types of human intervention factors and the
number of confirmations and deaths varied between the countries, reflecting the different
effects of the various epidemic prevention policies implemented in different regions.

(2) There was a significant lag between the four types of human intervention factors
and the number of diagnoses and deaths. The negative correlations between the four
human factors and the number of confirmed cases and deaths increased with the increase in
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lag days. This indicates that epidemic control measures would not be effective immediately
after the implementation of human interventions, but would require a period to be effective.
Correlation coefficients generally increase faster with a lag time of between 0 and 15
days, indicating that human interventions are more effective about 15 days after they
are implemented.

(3) The M-LSTMs proposed in this study are superior to univariate predictions. The
addition of human factor variables can improve prediction performance, but the addition
of individual factors can also lead to poor prediction results. The proposed multivariate
prediction method with correlation screening in this paper obtained the highest prediction
performance among all test cases.

Author Contributions: Conceptualization, methodology, original draft preparation Z.Q.; investiga-
tion, data curation B.Z.; writing—review and editing, supervision H.W.; All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation project of China
(72004086) and Fundamental Research Funds for the Central Universities (lzujbky-2022-kb09) and
(22lzujbkydx011).

Data Availability Statement: The data were collected from the open datasets of Our World in Data
(https://ourworldindata.org/covid-cases (accessed on 15 February 2023)) and the Oxford COVID-19
Government Response Tracker (https://github.com/OxCGRT (accessed on 15 February 2023)).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang,

L.F.; et al. Infectious Disease in an Era of Global Change. Nat. Rev. Microbiol. 2022, 20, 193–205. [CrossRef] [PubMed]
2. Yi, J.; Zhang, H.; Mao, J.; Chen, Y.; Zhong, H.; Wang, Y. Review on the COVID-19 Pandemic Prevention and Control System Based

on AI. Eng. Appl. Artif. Intell. 2022, 114, 105184. [CrossRef] [PubMed]
3. Kassania, S.H.; Kassanib, P.H.; Wesolowskic, M.J.; Schneidera, K.A.; Detersa, R. Automatic Detection of Coronavirus Disease

(COVID-19) in X-Ray and CT Images: A Machine Learning Based Approach. Biocybern. Biomed. Eng. 2021, 41, 867–879. [CrossRef]
[PubMed]

4. Zgheib, R.; Kamalov, F.; Chahbandarian, G.; Labban, O.E. Diagnosing COVID-19 on Limited Data: A Comparative Study of
Machine Learning Methods. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), Shenzhen, China, 12–15 August 2021; Volume 12837 LNCS.

5. Akinnuwesi, B.A.; Fashoto, S.G.; Mbunge, E.; Odumabo, A.; Metfula, A.S.; Mashwama, P.; Uzoka, F.M.; Owolabi, O.; Okpeku, M.;
Amusa, O.O. Application of Intelligence-Based Computational Techniques for Classification and Early Differential Diagnosis of
COVID-19 Disease. Data Sci. Manag. 2021, 4, 10–18. [CrossRef]

6. Qu, Z.; Li, Y.; Jiang, X.; Niu, C. An Innovative Ensemble Model Based on Multiple Neural Networks and a Novel Heuristic
Optimization Algorithm for COVID-19 Forecasting. Expert Syst. Appl. 2023, 212, 118746. [CrossRef] [PubMed]

7. Friedman, J.; Liu, P.; Troeger, C.E.; Carter, A.; Reiner, R.C.; Barber, R.M.; Collins, J.; Lim, S.S.; Pigott, D.M.; Vos, T.; et al. Predictive
Performance of International COVID-19 Mortality Forecasting Models. Nat. Commun. 2021, 12, 2609. [CrossRef]

8. Guo, S.; Fang, F.; Zhou, T.; Zhang, W.; Guo, Q.; Zeng, R.; Chen, X.; Liu, J.; Lu, X. Improving Google Flu Trends for COVID-19
Estimates Using Weibo Posts. Data Sci. Manag. 2021, 3, 13–21. [CrossRef]

9. Ng, P.C.; Spachos, P.; Plataniotis, K.N. COVID-19 and Your Smartphone: BLE-Based Smart Contact Tracing. IEEE Syst. J. 2021, 15,
5367–5378. [CrossRef] [PubMed]

10. Esmail, S.; Danter, W. Viral Pandemic Preparedness: A Pluripotent Stem Cell-Based Machine-Learning Platform for Simulating
SARS-CoV-2 Infection to Enable Drug Discovery and Repurposing. Stem. Cells Transl. Med. 2021, 10, 239–250. [CrossRef]

11. Ly, K.T. A COVID-19 Forecasting System Using Adaptive Neuro-Fuzzy Inference. Financ. Res. Lett. 2020, 41, 101844. [CrossRef]
12. Parbat, D.; Chakraborty, M. A Python Based Support Vector Regression Model for Prediction of COVID19 Cases in India. Chaos

Solitons Fractals 2020, 138, 109942. [CrossRef] [PubMed]
13. Chimmula, V.K.R.; Zhang, L. Time Series Forecasting of COVID-19 Transmission in Canada Using LSTM Networks. Chaos Solitons

Fractals 2020, 135, 109864. [CrossRef]
14. Shastri, S.; Singh, K.; Kumar, S.; Kour, P.; Mansotra, V. Time Series Forecasting of Covid-19 Using Deep Learning Models:

India-USA Comparative Case Study. Chaos Solitons Fractals 2020, 140, 110227. [CrossRef]
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