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SARS-CoV-2 has been circulating in the
human population for more than a year
and has caused over 150 million cases
globally as of 1 May 2021. Although a
lot of regions have relied on measures
such as social distancing, contact tracing
and quarantine to slow its spread [1],
multidisciplinary researchers are actively
engaged in understanding the dynamic
of its transmission. The accurate predic-
tion of the COVID-19 pandemic is foun-
dational to guiding public health policy-
making and alleviating socio-economic
consequences [2,3]. Since the beginning
of the outbreak, numerous studies have
used diverse techniques to assess the dis-
ease’s transmission dynamics and pre-
dict its future course [2–4]. However,
these modeling results have shown a
wide range of variations. Fundamental
improvements to the prediction require
a deeper and wider understanding of the
transmission dynamics under both hu-
man interventions and environmental in-
fluence. Here we provide an in-depth
exploration of the periodicity and mu-
tability in the evolutionary history of
the COVID-19 pandemic and investi-
gate the principle mechanisms behind
them based on statistical and dynamical
models.

The transmission of SARS-CoV-2
is regulated by various processes on
multiple timescales. Isolating these
processes on different timescales can
help to identify themajor inducements of
the COVID-19 pandemic. We used the
Ensemble Empirical Mode Decomposi-
tion (EEMD) method (Supplementary
Section 1) to separately decompose the

time series data of daily confirmed cases
and deaths in the northern and southern
hemispheres (NH and SH). The time
series data consist of the oscillations over
weekly and seasonal timescales and the
long-term trend that drives the increase
inCOVID-19 cases (Fig. 1b).Theweekly
oscillations for both hemispheres exhibit
negative signals for confirmed and death
cases during the weekend, while positive
signals are exhibited in the middle of the
week (Wednesday,Thursday and Friday,
see Fig. S3). This can be explained
by the distinct differences in human
behavior patterns between weekdays
and weekends, which may lead to a
weekly cycle of contact rate, contributing
to higher (lower) infection possibility
during weekdays (weekends). Although
this weekly pattern is consistent with the
observed weekly oscillation of COVID-
19 daily cases, the observed oscillation is
mainly attributable to the reporting bias,
with higher rates of reporting during
certain days of the week [5]. A higher
mortality reported during weekdays
further supports this point since the
weekly behavior pattern is unlikely to
cause a highermortality during weekdays
(Fig. S3).

Seasonal modulation is another ma-
jor factor that influences the dynamics
of COVID-19 transmission. Using the
EEMDmethod, decomposedoscillations
on the seasonal time scale indicate higher
infectivity and mortality in colder cli-
mates for both hemispheres, as shown
in Fig. 1b (for decomposition of death
cases please refer to Figs S2 and S3).
This result is consistent with both epi-

demiological and laboratory studies [6].
Seasonal variations inmeteorological and
environmental factors can affectCOVID-
19 transmission via their influence on
virus stability, host immunity and human
behavior. However, the EEMD decom-
position shows that the seasonal oscilla-
tions with limited amplitude are not able
to reverse the long-term growing trend of
the cases (Fig. 1b). Therefore, beneficial
climate conditions (e.g. onset of higher
temperatures during the warm seasons)
should not be used as a criterion with
regard to deciding whether or not to re-
lax control measures [7,8].

The time series data of COVID-19
exhibit cyclical behavior due to sea-
sonal and weekly modulation, while
its evolution is also regulated by some
rapid growth periods (abbreviated as
outbreaks hereafter). These abrupt
shifts could be attributable to changes
in governmental response and public
adherence, as well as the unexpected
natural and socio-economic crisis. In
either case, these incidents result in a
higher risk of mass gathering, which has
directly led to super-spreading events
and the subsequent COVID-19 disaster.
An anomaly detection algorithm (Sup-
plementary Section 2) has identified four
major outbreaks along the COVID-19
time series data, which are shaded in
Fig. 1a. For each outbreak, we separately
selected a hotspot region with a domi-
nant contribution (Russia, US, Brazil and
India) and attempted to provide causal
explanations of these outbreaks based on
the second version of the Global Predic-
tion System for COVID-19 Pandemic
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Figure 1. The evolution of the COVID-19 pandemic. (a) Global daily new cases, with deep (light) blue denoting the cases in the northern (southern)
hemisphere. (b) The weekly, seasonal and trend components decomposed by the EEMD method. (c)–(f) show the scenario simulations in (c) Russia,
(d) US, (e) Brazil and (f) India. The thin black lines in (c)–(f) denote the reported daily new cases in each country, while the thick solid and dashed lines
denote the simulation in two different scenarios.

(GPCP, v2, details in the Supplementary
Data) [4].

Russia is among the four countries
with the highest number of confirmed
COVID-19 cases as of May 2020. How-
ever, during the first outbreak, the initial
rise of cases inRussia happened later than
many of the neighboring countries. This
is possibly due to the effective implemen-
tation of proactive non-pharmaceutical
interventions (NPIs), which limited the
virus import from Asian countries. Un-
fortunately, the Russian authorities did
not react quickly enough to prevent case
importation from European countries, in
which local transmissions had already oc-
curred until mid-March 2020. As of 15
March, 74.2% of the inbound flights from
other European countries were still oper-
ating (Fig. 1b). A recent genomic study
has shown that most of the sampled se-
quences fromRussia in the early stage are
nested within other European subclades,
which indicates multiple introductions

of the virus from Europe [9]. Our sim-
ulation indicated that if travel restric-
tions were implemented five days ear-
lier, 64.1% of the cases could have been
avoided as of 20 May 2020, as shown in
Fig. 1c and Supplementary Section 3.1.

The United States contributed more
than 20% of reported cases globally dur-
ing the first three outbreaks. Since the
end of May 2020, a series of protests
against police brutality and racism have
been widespread in the US and many
regions across the world. Mass gath-
erings and physical contact during the
Floyd protests resulted in a significant in-
crease in contact rates and susceptible
supply (Fig. S10). Although the num-
ber of protests across the US peaked
in early June and steadily declined af-
terwards, mass gatherings during the
protests caused a 52.2% increase in to-
tal cases as of 1 September 2020, as
shown in Fig. 1d and Supplementary
Section 3.2.

Sustained and intensive public health
interventions have drastically disrupted
almost entire sectors of society. As a
result, signs of pandemic fatigue among
policymakers and the public have
emerged worldwide. For example, steady
declines in the government stringency
index have been recorded in Brazil and
India sinceMay 2020 [10], which almost
coincided with upward trends of trans-
mission rates before the significant rise
of daily new cases (Figs S12c and S13c).
Pandemic fatigue among the public led to
demotivated engagement in protection
behaviors, which put people at a higher
risk of infection. In India, religious cele-
brations and other social gatherings had
been allowed, which pushed reported
daily cases to break the world’s highest
record. However, under sustained public
health interventions, the pandemic
curves in Brazil and India could have
been flattened, as shown in Fig. 1e and f
and Supplementary Section 3.3.
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The performed statistical analysis
and dynamical simulations in this work
both indicate multifaceted influences
on COVID-19 transmission dynamics.
We found limited weekly and seasonal
modulations on COVID-19 evolution,
while public behaviors and governmental
decisions that determine the frequency
of mass gatherings were able to cause
abrupt shifts in the daily new cases. If
gathering activities could be accurately
parameterized, then reliable predictions
of COVID-19 cases are achievable.
Additionally, our study also highlights
the decisive role of NPIs. Given the facts
of emerging SARS-CoV-2 variants and
unguaranteed effectiveness of developed
vaccines, NPIs remain one of themost ef-
fective measures to control the epidemic
in the foreseeable future before high
levels of vaccine-mediated protection
can be achieved across the world.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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